Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cancer Ther ; 21(3): 448-459, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35027481

RESUMO

Prostate cancer remains the second leading cause of cancer death among American men. Radiotherapy is a potentially curative treatment for localized prostate cancer, and failure to control localized disease contributes to the majority of prostate cancer deaths. Neuroendocrine differentiation (NED) in prostate cancer, a process by which prostate adenocarcinoma cells transdifferentiate into neuroendocrine-like (NE-like) cells, is an emerging mechanism of resistance to cancer therapies and contributes to disease progression. NED also occurs in response to treatment to promote the development of treatment-induced neuroendocrine prostate cancer (NEPC), a highly aggressive and terminal stage disease. We previously demonstrated that by mimicking clinical radiotherapy protocol, fractionated ionizing radiation (FIR) induces prostate cancer cells to undergo NED in vitro and in vivo. Here, we performed transcriptomic analysis and confirmed that FIR-induced NE-like cells share some features of clinical NEPC, suggesting that FIR-induced NED represents a clinically relevant model. Furthermore, we demonstrated that protein arginine methyltransferase 5 (PRMT5), a master epigenetic regulator of the DNA damage response and a putative oncogene in prostate cancer, along with its cofactors pICln and MEP50, mediate FIR-induced NED. Knockdown of PRMT5, pICln, or MEP50 during FIR-induced NED and sensitized prostate cancer cells to radiation. Significantly, PRMT5 knockdown in prostate cancer xenograft tumors in mice during FIR prevented NED, enhanced tumor killing, significantly reduced and delayed tumor recurrence, and prolonged overall survival. Collectively, our results demonstrate that PRMT5 promotes FIR-induced NED and suggests that targeting PRMT5 may be a novel and effective radiosensitization approach for prostate cancer radiotherapy.


Assuntos
Carcinoma Neuroendócrino , Neoplasias da Próstata , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Carcinoma Neuroendócrino/genética , Diferenciação Celular , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Recidiva Local de Neoplasia , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/radioterapia , Proteína-Arginina N-Metiltransferases/metabolismo
2.
Cancer Gene Ther ; 29(3-4): 264-276, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33854218

RESUMO

Protein arginine methyltransferase 5 (PRMT5) was discovered two decades ago. The first decade focused on the biochemical characterization of PRMT5 as a regulator of many cellular processes in a healthy organism. However, over the past decade, evidence has accumulated to suggest that PRMT5 may function as an oncogene in multiple cancers via both epigenetic and non-epigenetic mechanisms. In this review, we focus on recent progress made in prostate cancer, including the role of PRMT5 in the androgen receptor (AR) expression and signaling and DNA damage response, particularly DNA double-strand break repair. We also discuss how PRMT5-interacting proteins that are considered PRMT5 cofactors may cooperate with PRMT5 to regulate PRMT5 activity and target gene expression, and how PRMT5 can interact with other epigenetic regulators implicated in prostate cancer development and progression. Finally, we suggest that targeting PRMT5 may be employed to develop multiple therapeutic approaches to enhance the treatment of prostate cancer.


Assuntos
Neoplasias da Próstata , Proteína-Arginina N-Metiltransferases , Humanos , Masculino , Oncogenes , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/terapia , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Transdução de Sinais
3.
Cancer Res ; 80(22): 4904-4917, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32999000

RESUMO

The majority of advanced prostate cancer therapies aim to inhibit androgen receptor (AR) signaling. However, AR reactivation inevitably drives disease progression to castration-resistant prostate cancer (CRPC). Here we demonstrate that protein arginine methyltransferase 5 (PRMT5) functions as an epigenetic activator of AR transcription in CRPC, requiring cooperation with a methylosome subunit pICln. In vitro and in xenograft tumors in mice, targeting PRMT5 or pICln suppressed growth of CRPC cells. Full-length AR and AR-V7 transcription activation required both PRMT5 and pICln but not MEP50. This activation of transcription was accompanied by PRMT5-mediated symmetric dimethylation of H4R3 at the proximal AR promoter. Further, knockdown of PRMT5 abolished the binding of pICln (but not vice versa) to the AR proximal promoter region, suggesting that PRMT5 recruits pICln to the AR promoter to activate AR transcription. Differential gene expression analysis in 22Rv1 cells confirmed that PRMT5 and pICln both regulate the androgen signaling pathway. In addition, PRMT5 and pICln protein expression positively correlated with AR and AR-V7 protein expression in CRPC tissues and their expression was highly correlated at the mRNA level across multiple publicly available CRPC datasets. Our results suggest that targeting PRMT5 or pICln may be explored as a novel therapy for CRPC treatment by suppressing expression of AR and AR splice variants to circumvent AR reactivation. SIGNIFICANCE: This study provides evidence that targeting PRMT5 can eliminate expression of AR and can be explored as a novel therapeutic approach to treat metastatic hormone-naïve and castration-resistant prostate cancer.


Assuntos
Canais Iônicos/metabolismo , Neoplasias de Próstata Resistentes à Castração/metabolismo , Proteína-Arginina N-Metiltransferases/fisiologia , Receptores Androgênicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Crescimento Celular , Progressão da Doença , Regulação para Baixo , Epigênese Genética/fisiologia , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/genética , Masculino , Metilação , Camundongos , Transplante de Neoplasias , Regiões Promotoras Genéticas , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/genética , Receptores Histamínicos H2/metabolismo , Receptores Histamínicos H3/metabolismo
4.
iScience ; 23(1): 100750, 2020 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-31884170

RESUMO

DNA double-strand break (DSB) repair is critical for cell survival and genome integrity. Upon recognition of DSBs, repair proteins are transiently upregulated to facilitate repair through homologous recombination (HR) or non-homologous end joining (NHEJ). We present evidence that PRMT5 cooperates with pICln to function as a master epigenetic activator of DNA damage response (DDR) genes involved in HR, NHEJ, and G2 arrest (including RAD51, BRCA1, and BRCA2) to upregulate gene expression upon DNA damage. Contrary to the predominant role of PRMT5 as an epigenetic repressor, our results demonstrate that PRMT5 and pICln can activate gene expression, potentially independent of PRMT5's obligate cofactor MEP50. Targeting PRMT5 or pICln hinders repair of DSBs in multiple cancer cell lines, and both PRMT5 and pICln expression positively correlates with DDR genes across 32 clinical cancer datasets. Thus, targeting PRMT5 or pICln may be explored in combination with radiation or chemotherapy for cancer treatment.

5.
Biotechnol Lett ; 41(8-9): 929-939, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31321593

RESUMO

OBJECTIVE: To develop a simple robust methodology of screening multiple CHO cell clones secreting recombinant proteins to assess their specific productivity. RESULTS: We developed a dual assay based on immunoassay measurements of a recombinant protein expression combined with staining of viable cells with resazurin. Following this approach, colonies can be simultaneously assessed for cell growth rate and for production of a recombinant protein. Combination of these two assays enables to estimate productivity of a recombinant protein per cell from the very early stages of a cell line development process (CLD) and exclude poor producers from further steps. Comparison of the dual assay with a standard CLD protocol followed by only analysis of protein expression level showed at least 10-20% increase in the amount of clones that can be included into pool of high-producers at early stages. This shortens duration of a typical CLD scheme from 23 to 19 weeks. CONCLUSIONS: Our method: (i) allows to include into workflow clones that demonstrate slow growth during single cell cloning but producing high amounts of a target protein, which otherwise would be lost in standard protocols of cells screening; (ii) can be applied for testing of DNA vectors for transfection and protein production; (iii) can be used for monitoring the heterogeneity of cell population and analysis of stable pools productivity.


Assuntos
Biotecnologia/métodos , Células CHO , Proliferação de Células , Técnicas Citológicas/métodos , Programas de Rastreamento/métodos , Proteínas Recombinantes/metabolismo , Animais , Cricetulus , Proteínas Recombinantes/genética , Coloração e Rotulagem/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...